Wind Integration Analysis for Iteration 2 Studies

Impacts to the Federal Systems Ability to Carry Reserves

SRT Webinar – February 28, 2013 Presenter: Paul Koski (BPA)

Outline

- What are Balancing Reserves
- Overview of the Analysis
- Evaluation criteria
- Analysis results
- Summary

What are Reserves?

- In a power system, generation must always equal energy demand or load
- The system must be able to balance the moment-to-moment variations between loads and generation by having the ability to increase or decrease generation
- This is done with Reserves
 - 1. Contingency Reserves
 - Reserves, or idle generators, to account for the loss of a major resource
 - 2. Balancing Reserves
 - Reserves to balance moment-to-moment variation in loads/generation as well as the difference between actual generation and schedules
 - This analysis will focus on reserves needed to account for actual and scheduled generation

What are Balancing Reserves?

Balancing reserves can be classified into 2 categories: Incremental (Inc) and Decremental (Dec)

Inc Reserves

Scheduled Wind Generation Inc Amount Actual Wind Generation

Dec Reserves

Overview of the Analysis

- Both Inc and Dec reserves were analyzed
- A set amount of Inc and Dec reserves were used
 - 900 MW for Inc
 - 1100 for Dec
 - These levels are being used in the current Rate Case
- The idea is to see how the different studies change the ability to carry reserves

Overview of the Analysis – Inc Reserves

Reserves Created by Spill

Reserves
Available
from
Unused
Turbines

 If the Total Inc reserves are less than 900 MW in a given water year/period, it is considered a miss

Total Inc Reserves

Overview of the Analysis – Dec Reserves

- For this analysis, elevated minimum turbine flows (above the absolute minimum) created 1100 MW of possible generation reduction
- If the new minimum turbine flow at a project are above those in a given water year/period of a study it is considered a Dec reserve miss

Metrics/Evaluation Criteria

- Each study is run through both the Inc and Dec process
- For each period, the number of water years that can't carry the reserves are recorded as is the magnitude of the reserve miss
- The idea is to see how the different studies limit the ability to carry reserves

Alternative Studies Analysis Results Inc Reserves

Inc Res	erve Imp	acts												
	October	November	December	January	February	March	April I	April II	May	June	July	August I	August II	September
Years out	of 70 Unal	ble to Carry ?	900 MW Inc F	Reserves										
2RC-CC	0	0	0	0	0	0	0	3	4	4	0	0	0	0
2A-TC	0	0	0	0	0	0	0	4	4	6	0	0	0	0
2A-TT	0	0	0	0	0	0	0	5	3	8	0	0	0	0
2B-TC	0	0	0	0	0	0	0	5	5	13	0	0	0	0
4														

	Oct	Nov	Dec	Jan	Feb	Mar	Aprl	Aprll	May	Jun	Jul	Augl	Augll	Sep
Magnitude	of Reserv	e Miss (MW	()											
2RC-CC	0	0	0	0	0	0	0	451	178	574	0	0	0	0
2A-TC	0	0	0	0	0	0	0	341	187	412	0	0	0	0
2A-TT	0	0	0	0	0	0	0	275	197	347	0	0	0	0
2B-TC	0	0	0	0	0	0	0	324	246	429	0	0	0	0

- There were no issues carrying Inc reserves outside of the Spring runoff period
- 2B-TC had the most Inc misses out of any study due to the higher flows

Alternative Studies Analysis Results Dec Reserves

Dec Re	serve Im	pacts												
	October	November	December	January	February	March	April I	April II	May	June	July	August I	August II	September
Years out	of 70 Unak	ole to Carry 1	1100 MW De	c Reserves	3									
2RC-CC	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2A-TC	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2A-TT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2B-TC	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Oct	Nov	Dec	Jan	Feb	Mar	Aprl	Aprll	May	Jun	Jul	Augl	Augll	Sep
Magnitude of Reserve Miss (MW)														
2RC-CC	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2A-TC	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2A-TT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2B-TC	0	0	0	0	0	0	0	0	0	0	0	0	0	0

 There were no issues carrying 1100 MW of Dec reserves in any of the studies

Component Studies Analysis Results Inc Reserves

Inc Res	erve Imp	acts												
	October	November	December	January	February	March	April I	April II	May	June	July	August I	August II	September
Years out	of 70 Unal	ble to Carry 9	00 MW Inc F	Reserves										
2RC-CC	0	0	0	0	0	0	0	3	4	4	0	0	0	0
E1	0	0	0	0	0	0	0	7	49	54	1	0	0	0
E2	0	0	0	0	0	0	0	13	29	39	5	0	0	0
E3	0	0	0	0	0	0	0	2	3	8	0	0	0	0
E5	0	0	0	0	0	0	0	5	5	13	0	0	0	0

	Oct	Nov	Dec	Jan	Feb	Mar	Aprl	Aprll	May	Jun	Jul	Augl	Augll	Sep
Magnitude	of Reserv	e Miss (MW	/)											
2RC-CC	0	0	0	0	0	0	0	451	178	574	0	0	0	0
E1	0	0	0	0	0	0	0	563	775	794	21	0	0	0
E2	0	0	0	0	0	0	0	444	750	734	557	0	0	0
E3	0	0	0	0	0	0	0	302	269	420	0	0	0	0
E5	0	0	0	0	0	0	0	324	246	429	0	0	0	0

- E1 and E2 showed considerable impacts to the ability to carry 900 MW of Inc reserves, due mainly to high flows and higher spill requirements
 - In E1 and E2 about 15% of the desired reserve level could be carried in the years that miss (about 43-77% of the years) during May and June
 - In 2RC-CC about 36% of the desired reserve level could be carried in the years that miss (about 6% of the years) during June

Component Studies Analysis Results Dec Reserves

Dec Re	eserve Im	pacts												
	October	November	December	January	February	March	April I	April II	May	June	July	August I	August II	September
Years ou	t of 70 Una	ble to Carry	1100 MW De	c Reserves	ŝ									
2RC-CC	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E1	0	21	14	27	20	0	0	0	0	0	0	0	0	0
E2	0	17	4	32	12	0	0	0	0	0	0	0	0	0
E3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E5	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Oct	Nov	Dec	Jan	Feb	Mar	Aprl	Aprll	May	Jun	Jul	Augl	Augll	Sep
Magnitude	of Reser	ve Miss (MW	<i>J</i>)											
2RC-CC	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E1	0	395	220	268	246	0	0	0	0	0	0	0	0	0
E2	0	430	191	378	317	0	0	0	0	0	0	0	0	0
E3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E5	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- E1 and E2 are the only studies that had issues maintaining 1100 MW of Dec reserves
 - This is due to the low flows on the river during the Nov Feb period
 - The minimum flows needed to maintain sufficient Dec reserves
 were above those found in E1 and E2

Summary

 E1 and E2 Components showed significant impact to the ability to carry both Inc and Dec reserves

This is a result of low winter flows and high spring flows with elevated spill requirements

 2B-TC and E5 (as its based on 2B-TC) also showed a decreased ability to carry Inc reserves

Higher spring flows due to modified upper rule curves was the main driver

Summary (cont.)

- Consequences of reduced ability to carry reserves
 - Additional generation resources would be required to cover Increserves for variable resources like wind
 - Variable resources like wind would be forced to lower generation to its schedule
- These studies are done on a monthly time step which is likely a conservative look at reserve impacts
 - Within month flow variation, daily load shape (lack of market spill), and unplanned outages cannot be properly analyzed when looking at monthly data